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Abstract ?he globular state of a randomly tranched disordered hetempalymer-lhe 
simplest model of RNA with given secondary structure-is investigated using lhe replica 
approach in the mean-field appmximation. It is shown that for dimensions of space less 
than four there is replicaqmmetry breaking with p e r  behaviour of the Parisi order 
parameter. The rale  of fluctuations of links decreases when helerogeneily of interaction 
in the molecule increases. 

1. Introduction 

Statistical mechanics of heteropolymers is very interesting due to obvious biophysical 
applications for investigation of proteins and nucleic acids. Several statistical- 
mechanical models of proteins were suggested recently and the results are encouraging 
(Bryngelson and Wolynes 1987, Garel and Orland 1988, Shakhnovich and Gutin 
1989a,c, 199oa; see the review in Karplus and Shakhnaich 1992). In m a t  of these 
papers a simple model of the protein chain-linear heteropolymer with disordered 
sequence of monomers-has been investigated. Powerful techniques developed in the 
spin-glass theory (Binder and Young 1986) were used in these studies and considerable 
progress was achieved. It was shown (Shakhnovich and Gutin 1989b) that statistical 
mechanics of random linear heteropolymer is very sensitive to space dimensionality 
d making heteropolymers at d > 2 dramatically different from the lowdimensional 
(d < 2) case. In the latter case there is unusual replica symmetry breaking with p w e r  
dependence of the Parisi order parameter and ultrametric structure of configurational 
space. 

In the present paper we study equilibrium properties of another biological 
macromolecule--RNA. The principal difference of RNA molecules from proteins is 
that, after formation of seconday structure with several short helices, RNA molecules 
possess a tree-like structure (see for example, the model of secondary structure of 
16s IRNA (Gutell et ul 1985). Though the positions of branch points are determined 
in principle by minimization of all interactions involved (as in proteins secondary 
structure is strongly influenced by tertiary structure) this may be not relevant 
for RNA where a complementarity rule dictates strong pairing and corresponding 
hydrogen bonds make the seconday structure pattern stable and &ed even in the 
absence of tertiary interactions. This point of view is favoured by experimental 
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results on ~RNA melting which demonstrated the high stability of secondary structure 
(clover leaf) after unfolding of the tertiary structure (Privalov and Fiimonov 1978). 
Calculation of energies of secondary Structures in random and natural RNA (Higgs 
1992) demonstrates that these energies are significant (tens of kcal m-I) and can 
really ‘quench’ secondary structure. This makes it reasonable to consider quenched 
branching as a starting approximation effect of secondary structure. Therefore our 
model of RNA is not linear but a randomly branched molecule with helices as 
monomers. Intramolecular interactions in a chain depend on the chemical structure 
of interacting monomers: therefore we have to consider the randomly branched 
disordered heteropolymer. As the formation of secondary structure chains stiffens, 
long-range interactions occur not between monomers but rather between parts of 
the chain. This means that though initially there were only four types of monomers 
in RNA this ‘renormalization’ of monomers effectively increases the number of their 
types, which makes energies of interactions statistically independent. These models for 
linear heteropolymers were introduced in Garel and Orland (1989) and Shakhnovich 
and Gutin (1989a-c). 

The model is twice disordered because we have (a) a random quenched structure 
of branching and (b) random energies of interactions between monomers. The 
latter disorder has been studied for linear heteropolymers in Shakhnovich and Gutin 
(1989a-c). As for randomness caused by branching, it has been much less frequently 
investigated it is much less investigated and there is even no dear distinction between 
annealed and quenched cases (see, for example, Daoud et a1 (1983), Gaunt and 
Flesia (1991), Gutin el ai (1992)). It should be noted that the methods used in 
the present paper are similar to the those suggested in Shakhnovich and Gutin 
(1989b) and applied for other systems in Mezard and Parisi (1992a,b). However, 
the crucial difference with the case of a linear polymer is in configurational entropy 
caused by polymeric bonds. Branched polymers are more compact and many contacts 
between monomers are formed by chain neighbours so that the polymeric structure 
of a branched molecule plays a very significant role in its thermodynamic behaviour. 
This difference leads to power dependence of the Parisi order parameter for d < 4 
and hence, to a completely different structure of configurational space. Therefore, 
in real three-dimensional space there is a dramatic difference in the equilibrium 
behaviour of molecules of RNA and proteins exhibit dramatic difference because 
proteins (linear heteropolymers) can be described (Shakhnovich and Gutin 1989c, 
1990) by the random energy model (REM) (Derrida 1980) with different low-energy 
states being essentially different in structure and therefore not correlated. As we shall 
show in this paper, this is not the case for branched polymers and the strong influence 
of polymeric bonds in this case causes significant effects that makes configurational 
space ultrametric. 

A M Gutin et a1 

2. The model and basic relations 

The partition function of a branched molecule can be presented in the form 

1 - -w 6T 6 ( ~ i  - ~ j ) 6 ( ~ ;  - t k )  
i # j # k  
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where integration is taken over space coordinates xi of all monomers (i = 
1,2,. . . , N), T is temperature (we use units in which the Boltzmann constant 
k, = l), vij is the two-body interaction constant between ith and jth monomers 
and W is a three-body interaction constant which is assumed to be independent of 
the type of monomers. The factor G, depends on the coordinates of all monomers 
{q} and it describes the structure of branchings of the molecule 

where the product is taken only over pairs of monomers ( i , j )  that are chemically 
bonded and the factor g in its simplest form is Gaussian (Lifshitz et al 1978): 

g(r) = (2?r~’/d)-~/’exp ( - dx2/2uz). (3) 

Here a is the mean distance between the neighbouring monomers. The two-body 
interaction constants vij  are assumed to be independent random variables with 
Gaussian distribution 

p ( v i j )  = (2?rvZ)-d/ZeXp ( -  ( v i j  - o)’/2vZ) (4) 

where d is the dimension of space, i, and v are the mean and the standard variance 
respectively. This condition of statistical independence and Gaussian distribution 
of interaction parameters vi j  may seem too restricting for RNA as the number 
of types of monomers there is only four. However, the recent solution for the 
freezing transition in a ‘two-letter’ heteropolymer, where interaction energies are by 
no means independent, demonstrated similarity in the thermodynamic behaviour of 
such heteropolymers with models with independent interactions (Sfatos et al 1992). 
This justifies taking interaction energies in the simplest form (4). 

We have to evaluate the average free energy using the replica trick 

where (. . .), denotes averaging over disorder caused by heterogeneity of monomers 
and (. . .)B denotes averaging over random structures of branching. Averaging over 
v i j  with weight (3) gives c 

hhere integration is taken Over coordinates of all monomers of all n replicas {I?} 
wbd 

h.&e{xP} = $ v = f f f f 6 6 ( 4  - z;) t 8Wff  S(Z? - zP)S(ZP - x:) 
a i#j a i # j # k  

3 - $v’ CS(@ - x P ) 6 ( 4  - x,”) (7) 
a#P i # j  
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where veff = t? - v2/2u where U is a monomer volume which corresponds to the 
scale of &functions in the definition of the Hamiltonian of the system. This growth 
of average attraction due to disorder has been discussed in (Shakhnovich and Gutin 
1989a, Higgs and Joanny 1991, Stepanow er a[ 1992). "his effect comes from terms 
with a = p and exists even in the aMealed case. It corresponds physically to the fact 
that heterogeneity leads to some rearrangement of a molecule (even without freezing) 
when monomers which attract each other become closer in space. This rearrangement 
is facilitated in more compact molecules and effective attraction occurs. 

A M Gutin et a1 

We now define the macroscopic order parameter p ( X )  which depends on the dn- 
dimensional vector X = ( X I , .  . . , X,) 

N o  

Expression (6) can be rewritten in terms of p 

where energy term E is given by 

where 

n U ( ~ ) = E 6 ( x f - r )  = J p ( X ) 6 ( X a - r ) d X  (12) 
i 

is density of monomers of replica a and 

Qa,p(ri ,~2) = C ~ ( X ?  - '1)6(ri 6 - ~ z )  = J d X ) s ( r ,  - ~ 1 ) 6 ( l p  - 4 (13) 
i 

is the correlator of replicas a and p. We can also introduce a more physically 
transparent parameter which has the meaning of structural overlaps, or degree of 
similarity between replicas 

' J  1 
qu6 = -EC(+? - x f )  = QaO(r,r)dr. 

N i  
The entropy term S ( p )  is given by 

N h  N n  
S(P) = 1 n J n  n l d r ? 6  [ p ( W  - 

,=le= i=l  -=I 

and corresponds to the number of conformations of all replicas which have a giv. n 
P(X). 
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3. Entropy of the branehed globule and the mean-field approximation 

We are interested in the globular state of the molecule, and can use a mean-field 
approximation to determine the free energy and the equilibrium order parameter. In 
this approximation the replica free energy is 

FIp) = W P )  - TSIpI. (16) 

In order to evaluate entropy S we use the method proposed by Lifshitz (Lifshitz 
el nl 1978) for the case of a globule formed by a linear homopolymer. Consider the 
system of n replicas in an external field. The partition function of such a system is 

It can be written as an integral over order parameter p 

z,,{+I = J D p ( x ) e x p  ( - ~ J + ( ~ ) p ( x ) d x  + SIP)). (18) 

In the mean-field approximation this integral is calculated by the saddle-point method 
with the result 

SIP} = $ J +(X)p(X)  d X  + In .%{$I (19) 

where saddle-point of p is determined by the equation 

bS +(X) = T -  
' 

Therefore the order parameter is 

Now we have to evaluate the partititon function Zn{+) of n-replica system in 
the external field. In order to do this we introduce Z N ( X )  as follows: 

where M is the number of all possible structures of branching. Taking into a w u n t  
the definition (8) it is possible to rewrite (22) in the form 
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where CB denotes summation over all possible structures of branching (A4 = 

We will consider now the simplest case (the generalization is straightforward) 
when each monomer a n  belong to one of two types: (a) the end monomer which 
is bonded only with one other monomer and @) the branching monomer which is 
bonded exactly with three other monomers (figure 1). Moreover we suppose that the 
molecule is treelike, i.e. without closed cycles. In this case the number of monomers 
N is even. A recursion formula for Z,(X) a n  be written (see, for details, deGenne8 

A M Gutin et a1 

CB ‘1. 

(1%)) 

The meaning of this recursion equation is that the end monomer with coordinates X 
is bonded with branching which is bonded with two parts of the molecule having m 
and ( N  - m) monomers. Moreover monomers at branching points play a role of end 
monomers for both remaining parts of the molecule. It should be noted that (24) is 
valid when N > 4. For N = 2 we have 

2 2  = G(scp(-4/T)) (25) 

where we introduce operator 3 as follows: 

The recursion relation (24) can be simplified by the introduction of a generating 
function Z,(X) = Z , ( X ) p N  

Z, = 3 (exp(-4/T)(p2 t 2;)) . (27) 

It is well known that in the thermodynamic limit N i 00 all that is important for 
the partition function Z,(X) are the singularities of the generation function as a 
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function of the complex variable p .  The equation (27) is quadratic. Therefore we 
assume that it’s solution has square root singularity (see also DeGennes (1968)) 

z,(x) = @(x) (p*  - p)’/’  + regular part 

Zn{$} = M--’Z,(X) e ( p * ) - N M - ’ .  

(28) 

and in thermodynamic the limit N + 00 we have 

(29) 

Differentiating (27) with respect to p and isolating the singularity when p - p’ as a 
result we have 

II, = zi(exp(-$/T)Z$) (30) 

where Z ( X )  = limpdp. Z,(X). Finally, when p = p* the equation (27) can be 
written in the following form: 

Z = i ( e ~ p ( - 4 / T ) ( p * ~  + Z’)). (3 1) 

Now we may determine the order parameter p(X). In order to do this we use 
equations (21) and (29) with the result 

p (X)  = N T 6  In p* /6$(  X ) .  (32) 

Variation of (31) with respect to $(X) taking into account (30) gives 

P = f$exp(-$/T)(l+ Z’/P*’). (33) 

Expressing the field $ from this equation and substituting into (30), (31) and (19) we 
obtain finally 

S{p}  = / d X p ( X ) I n  (zy) (34) 

where function U ( X )  is the solution of equation 

and 

2 = i ( p / i * ) .  

This very cumbersome expression for the entropy can be simplified when the n- 
replica density p( X )  is a ‘smooth’ function of space variables so that its characteristic 
scale R is larger than the mean length of a polymeric bond a (R > a). In this case 
the operator 6 up to the second order in ( a / R )  is 

= 1 + azA + $‘A’ (37) 
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where 
n 

A = #/ax;. 
,=l 

Solving equation (35) and then calculating the entropy (34) to the same order, we 
obtain a simple result 

S{p }  = -y4/ 1 U d X .  
P 

(39) 

It should be noted that the obtained expression for entropy is substantially different 
f” the entropy of a linear polymer (cf equation (A1.7) of Shakhnovich and Gutin 
(198913)). Indeed the entropy of a branched molecule is of the order of ( a / R ) 4  
while the entropy of the linear molecule is of the order of (a /R)’ .  What is even 
more important, in this expression for entropy quenched character of branchings, is 
reflected explicitly. Indeed the nonlinearity in the Laplace operator (which, as given 
by (38) contains differentiation with respect to coordinates of all replicas) means 
that interaction between replicas (where a , P  terms mix) show up in entropy. This 
is a direct consequence of quenched disorder in branchings (we remind the reader 
that in a linear polymer the effect of quenched disorder, as revealed by interreplica 
interactions, enters only on the level of averaging of interaction energy (Garel and 
Orland 1989, Shakhnovich and Gutin 1Wa). 

Nevertheless, as in the case of linear molecules, for branched molecules entropy 
S{p }  vanishes when the order parameter pis constant (more precisely when Ap = 0). 
This fact allows us to consider a globule formed by a large molecule in the 
volume approximation (Lifshitz et a1 1978) neglecting surface effects. In the volume 
approximation the density of monomen of any replica n, is constant inside the large 
globule, being independent of the replica index, and is determined by one-replica 
terms of energy (11) 

n, = nu = -2veE/3u .  (40) 

Therefore in the volume approximation in order to determine a non-trivial order 
parameter Qaia it is necessary to maximize replica free energy 

with normalization condition 

/ p ( X ) 6 ( X ,  - r ) d X  =no(.). (42) 

It should be noted that order parameter p ( X )  is translationally invariant inside the 
large globule, i.e. 

p(x,  + x , x 2  + x,.. .,In + x) = P ( X 1 , 1 ’ , . ’  .,xn) (43) 

for any xd Q: V where V is the volume of the globule. 
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4. Qualitative analysis 

First of all we analyse qualitatively possible regimes of the system. 
(1) Assume that the characteristic scale of the order parameter p ( X )  is R, 

then as it follows from the normalization condition (42) the energy term in (41) 
E - N I I ~ ~ , R - ~  and the entropy term S - N ( u / R ) ~ .  Therefore for d < 4 free 
energy F as a function of R has it's maximum at 

R U R' = ( T a 4 / n u ~ z ) ' / ( 4 - d ) .  (44) 

Characteristic scale R' increases when molecule heterogeneity II decreases. (R' - w 
at II -+ 0). We shall not consider the case d > 4. 

(2) Then we introduce a dimensionless variable y via the relation: X = R'y; it 
allows one to represent free energy in dimensionless and temperature-independent 
form 

and normalization condition 

/ v ( Y ) ~ ( Y ,  - v)dY = 1. (46) 

Now it is clear that the equilibrium form of the order parameter as well as the 
nature of replica symmetry breaking do not depend on parameters of the model 
f i ,v ,w and a. All the dependence on these parameters is introduced via the 
dependence characteristic scale R' on these parameters. 

(3) The translational invariance of the order parameter p ( z )  inside the globule 
causes the replica symmetry breaking. Indeed in the opposite case the energy term 
in (41) is of the order n (in the limit n -+ 0) while the entropy is of order 1. 

5. Gaussian variational procedure 

An exact maximization of the free energy F given by the expression (41) is impossible. 
In this situation it seems reasonable to use a variational approach with the simple 
Gaussian trial functions Shakhnovich and Gutin (198%). 

where keg is the trial matrix which would reflect a possible replica-symmetry breaking; 
we will assume that it is of the Parisi type. 

The translational invariance of the order parameter (43) leads to the condition 
for the matrix elements keg 
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This condition together with the normalization condition (42) gives 

A M Gutin et a1 

p,, = nu( Dx('-"))~/' (49) 

where D is the minor of an arbitrary diagonal element of the matrix kap. 
The choice of the trial function in the form (47) has the advantage that integrals 

in (41) are Gaussian and can be evaluated using (48) and (49). The energy term 
in (41) is exactly the same as in Shakhnovich and Gutin (1989b) while entropy is 
different and it is entropic term which makes a difference between cases of branched 
and linear polymers. %king p in the form (47) and substituting it to (39) we obtain 

S = -4dNa4 k$ = -4dNa4 (F k t  + k:a). (50) 
UP *#a 

Correspondingly, for free energy we have 

where Dwp is the determinant of the matrix obtained from kea by subtracting 
columns and rows which intersect in the diagonal elements kea and kaa divided 
hy D.  

We use now Parisi a m t z  (Parisi 1980) and make the limit n -+ 0. Instead of the 
matrices kea and Daa we have now functions k ( z )  and D(z )  respectively which 
are defined at 0 < z < 1. In terms of these functions the free energy (51) has the 
form 

F{p}  = Nn[4da4( [ 1' k(z)dz]' - 6 k'(z)dr) 

1 
D( I)-~/' dz] . 

The function D ( z )  is calculated in appendix 2 of Shakhnovich and Gutin (1989b) 
with the result 

where 

K ( z )  = i- k(y)dy - zk(z) .  

Variation of (52) with respect to I<( z) gives 

1 6 ( 2 ~ ) ~ ~ ~ ( R ' ) ~ - ~ K ~ ( z )  = Z D - ( ~ + ' ) / ~ ( Z )  - yD-(dtZ)/Z(y)dy. 

(54) 

(55) 
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Differentiating twice this equation with respect to x we obtain finally 

K,xm if0 < 5 < 2" 
if 2" < I <  1 { K o + ~  

K ( x )  = 

where 

d + 4  4 8 ( 2 ~ ) ~ / ~  2 / ( d  4, ) - ( R y .  
d + 2  

K" = (-)-m( 4 

It is easy now to calculate the correlator of replicas Q , + ( ~ , T ~ )  defined by (13). 
Translational invariance of the order parameter implies that the comelator depends 
only upon the difference of the space arguments: Q 4 ~ 1 ~ 7 - 2 )  = Q o r p ( q  - rz). 
Tiking the limit n + 0 we obtain the function of two variables Q(x;r)(O 6 2 < 1) 
which is determined by the expression 

Q ( ~ ; T )  = ( n , ~ - ~ / ~ R - ~ ( z ) ) e x p (  - ( . /R(x) )~)  (57) 

where 

It should be noted that R( I") coincides with R* up to numerical factor. 
We may express our result in terms of the physically more clear parameter q,@ 

defined in (14). In the limit n + 0 it becomes a function q ( x )  which can be derived 
from (14) and (57) 

q ( x )  = n-dfZR-d(z) 

with R( z) defined by (58). 

(59) 

6. Discussion 

The replica-symmetry breaking means existence of a numerom equilibrium states 
separated by high (infinite in thermodynamic limit) energy bamers (Mezard et a1 
1984). The chain configuration in each of these states is fixed up to characteristic 
scale E(+,) R'. The physical meaning of it is that each energy valley, or pure 
state, represents a 'tube' of characteristic diameter R* and all chain conformations 
belonging to this valley are within this tube. It is clear that R' shows the degree of 
fluctuations in each state and is analogous to Edwards-Anderson parameter in spin- 
glasses. The character of replica-symmetry breaking (RSB) (i.e. the dependence of the 
order parameter Q on x) reflects the structure of conformational space, and shows 
to what extent are valleys corresponding to lowest energies similar. The conventional 
interpretation of the RSB via the relation P(q)  = dx/dq (Mezard et a1 1984) with 
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where summation is taken over all pure states (free energy valleys), qaa is the 
structural overlap between states. It is clear that P ( q )  serves as a good ‘probe’ 
of the structure of configurational space. It shows whether low-energy wlleys (i.e. the 
ones having high Boltmann probabilities p ,  have similar or different conformations. 
Using the relation between P( q )  and q( z )  we have 

A M Gurin a al 

The plot of this function is shown in figure 2 This type of the function P( q )  implies 
that it is possible (and the probability of it is rather high) to find low-energy valleys 
with some structural similarity ( P ( q )  is non-zero at q / q ( l )  - 1). Also continuity of 
the function q( z) implies that comigurational space in this system is ultrametric. 

As for biological applications of obtained results it should be noted that for 
d = 3 RNA molecules considered as randomly branched trees differ significantly from 
proteins. As was shown in Shakhnovich and Gutin (1989~) proteins at d = 3 can be 
described by the REM. Replica symmetry breaking and corresponding ‘freezing, with 
the formation of unique structure in tinear heteropolymers at d = 3 occurs only at 
some finite heterogeneity (or in other words, at sufficiently low temperature). Space 
structure in proteins is frozen up to microscopic scale, i.e. micro-state coincides with 
pure-state. As for RNA molecules some, space structure (but fluctuating on scale R’) 
exists at arbitrary heterogeneity (temperature). However this structure is not defined 
microscopically: at low heterogeneity of a chain it fluctuates strongly and the scale 
of these fluctuations decrease as heterogeneity increases. Also the fact that low- 
energy conformations are likely to have some structural similarity in the case of RNA 
implies that configurational space of such molecules is ’smooth’. Such difference in 
equilibrium behaviour may lead principally to a different nature of self-organization 
of proteins and RNA molecules. 

Acknowledgments 

This work was supported in part by the Petroleum Research Fund administered 
by ACS through grant No PRF-25536,M and by the David and Lucille Pachrd 
Fellowship (to FS). 



GIobular stare of branched random heteropo[ymers 1049 

References 

Binder K and Young P 1986 Rnr Mod Phys. 68 801 
BIyngelson J and Wolynes P 1987 Bm Nul A c d  Sri 84 7524 
Daoud M, Pincus P, Stockmayer W H and Witten T 1983 Macronwleculer 16 1833 
Derrida B 1980 Phya Reu Dn 
Garel T and Orland H 1988 Emphys  Leo. 6 307 
Gaunt D S and Flesia S 1991 I Phw A: Math Gen 24 3655 

79 

de Gennes P G 1968 Biopolymers 6 715 
Gutell R R. Wiser B. Wesse C R and Noeller H F 1985 h e  Nucl Acid Rm MOL BWL 32 155-216 " 
Gutin A M, Gmberg A Yu and Shakhnovich E I 1992 Macromolecules in press 
Higgs P 1592 CEN Saclay SPhT192-78 BeprinI 
Higgs P and Joanny J F 1991 I Chm Phys. 94 1543 
Karplus M and Shakhnovich E 1592 Froten Folding ed T Creighton (New York Wiley) ch 4, pp 127-95 
Iifshitz I M, Gmsberg A Yu and Khokhlov A R 1978 RO! Mod Phys. 50 683 
Mezard M, Parisi G, Sourlas N, lbulouse G and Viramro M J 1984 I Physique 45 843-54 
Mezard M and Parisi G 1992a I Phy&c 1 1 809 
- 1992b J.  Rys .  A: Math Gen 25 4521 
Parisi G 1980 J.  Phya A: Math Gen U L155, 1887 
- 1983 Phys. Rev Lett SO 1946 
Privalov P L and Fiiimonov V V 1978 J.  MOL BWl 122 447 
Shakhnovich E I and Gutin A M 1989a Europhy. Lett. 8 327 
- 1989b J .  Rys, A: Math Gen 22 1647 
- 1989c Bwphys, chnn 34 187 
- 1990a Nawe 346 773-5 
- 1 W b  I Chem Phys. 93 5967 
Sfatos C D, Gutin A M and Shakhnovich E 1 1992 Phy. Rm Len. at press 
Stepanow S, Schulz M and Sommer J U 1992 Europhys. Len. 19 273-7 


